Reducing the Energy Budget in WSN Using Time Series Models
نویسندگان
چکیده
منابع مشابه
Urban Energy Budget Models
1 Department of Meteorology, University of Reading, Reading UK RG6 6BB, UK, T: +44 118 3786248, [email protected] 2 King’s College London, London, UK 3 University of Helsinki, Department of Physics, PL 48, FIN-00014, Helsinki, Finland, tel. +358 50 3110371, email: [email protected] 4 University of Göteborg, Gothenburg, Sweden, tel.: +46 31 7862606, e-mail: [email protected] 5 Un...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملForecasting economic time series using unobserved components time series models
A preliminary version, please do not quote
متن کاملKeeping green: reducing energy consumption without harming the budget.
L ately, the proposed cap and trade policy, carbon taxes, and other regulations designed to lower energy consumption and emission have garnered a lot of buzz. Much of this publicity implies that “being green” is not just responsible but also fun and profitable. The literature on green hospitals touts the many benefits that may accrue as a result of this effort, including fewer medical errors, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wireless Communications and Mobile Computing
سال: 2020
ISSN: 1530-8669,1530-8677
DOI: 10.1155/2020/8893064